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Concurrent programs



Abstraction of concurrent programs

We use an abstract notation for multi-threaded applications, which is
similar to the pseudo-code used in Ben-Ari’s book but uses Java
syntax.

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

cnt = counter; 1

counter = cnt + 1; 2

shared memory

local memory

code

Each line of code includes exactly one instruction that can be
executed atomically.
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Traces

A sequence of states gives an execution trace of the concurrent
program. (The program counter pc points to the atomic instruction
that will be executed next.)

# t’S LOCAL u’S LOCAL SHARED

1 pct : 1 cntt : ⊥ pcu : 1 cntu : ⊥ counter : 0
2 pct : 2 cntt : 0 pcu : 1 cntu : ⊥ counter : 0
3 pct : 2 cntt : 0 pcu : 2 cntu : 0 counter : 0
4 pct : 2 cntt : 0 done counter : 1
5 done done counter : 1

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

cnt = counter; 1

counter = cnt + 1; 2
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Races



Race conditions

Concurrent programs are nondeterministic:

• executing multiple times the same concurrent program with the
same inputs may lead to different execution traces

• this is a result of the nondeterministic interleaving of each
thread’s trace to determine the overall program trace

• in turn, the interleaving is a result of the scheduler’s decisions

A race condition is a situation where the correctness of a
concurrent program depends on the specific execution

The concurrent counter example has a race condition:

• in some executions the final value of counter is 2 (correct),

• in some executions the final value of counter is 1 (wrong).

Race conditions can greatly complicate debugging!
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Concurrency humor

Knock knock.

– “Race condition.”

– “Who’s there?”
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Data races

Race conditions are typically caused by a lack of synchronization
between threads that access shared memory.

A data race occurs when two concurrent threads

• access a shared memory location,

• at least one access is a write,

• the threads use no explicit synchronization mechanism to
protect the shared data.

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

cnt = counter; 1

counter = cnt + 1; 2
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Data races vs. race conditions

A data race occurs when two concurrent threads

• access a shared memory location,

• at least one access is a write,

• the threads use no explicit synchronization mechanism to
protect the shared data.

Not every race condition is a data race
• race conditions can occur even

when there is no shared memory
access

• for example in filesystems or
network access

Not every data race is a race condition

• the data race may not affect the
result

• for example if two threads write
the same value to shared memory
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Synchronization problems



Push out the races, bring in the speed

Concurrent programming introduces:

+ the potential for parallel execution (faster, better resource usage)

− the risk of race conditions (incorrect, unpredictable computations)

The main challenge of concurrent programming is thus introducing
parallelism without introducing race conditions.

This requires to restrict the amount of nondeterminism by
synchronizing processes/threads that access shared resources.
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Synchronization

We will present several synchronization problems that often appear in
concurrent programming, together with solutions.

• Correctness (that is, avoiding race conditions) is more important
than performance: an incorrect result that is computed very
quickly is no good!

• However, we also want to retain as much concurrency as
possible, otherwise we might as well stick with sequential
programming
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Shared memory vs. message passing synchronization

Shared memory
synchronization:

• synchronize by writing to
and reading from shared
memory

• natural choice in shared
memory systems such as
threads

shared memory

Thread T1 · · · Thread Tn

Message passing
synchronization:

• synchronize by
exchanging messages

• natural choice in
distributed memory
systems such as
processes

memory

· · ·

Process P1

memory

Process Pn

message
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Shared memory vs. message passing synchronization

Shared memory
synchronization:

shared memory

Thread T1 · · · Thread Tn

Message passing
synchronization:

memory

· · ·

Process P1

memory

Process Pn

message

The two synchronization models overlap:

• send a message by writing to and reading from shared memory
(example: message board)

• share information by sending a message
(example: order a billboard)

However, in the first part of the course we will focus on
synchronization problems that arise in shared memory concurrency;
in the second part we will switch to message passing.
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The mutual exclusion problem

The mutual exclusion problem is a fundamental synchronization
problem, which arises whenever multiple threads have access to a
shared resource.

critical section: the part of a program that accesses the shared
resource (for example, a shared variable)

mutual exclusion property: no more than one thread is in its critical
section at any given time

The mutual exclusion problem: devise a protocol for accessing
a shared resource that satisfies the mutual exclusion property

Simplifications to present solutions in a uniform way:

• the critical section is an arbitrary block of code

• threads continuously try to enter the critical section

• threads spend a finite amount of time in the critical section

• we ignore what the threads do outside their critical sections
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The mutual exclusion problem

The mutual exclusion problem: devise a protocol for accessing
a shared resource that satisfies the mutual exclusion property

T shared;

thread tj thread tk

// continuously

while (true) {

entry protocol

critical section {

// access shared data

}

exit protocol

} /* ignore behavior

outside critical section */

// continuously

while (true) {

entry protocol

critical section {

// access shared data

}

exit protocol

} /* ignore behavior

outside critical section */

depends on
computation

may depend
on thread
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Mutual exclusion problem example: concurrent counter

Updating a shared variable consistently is an instance of the mutual
exclusion problem.

int counter = 0;

thread t thread u

int cnt; int cnt;

while (true) {

entry protocol

critical section {

cnt = counter;

counter = cnt + 1;

}

exit protocol

return;

}

while (true) {

entry protocol

critical section {

cnt = counter;

counter = cnt + 1;

}

exit protocol

return;

}

take turn incrementing counter
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What’s a good solution to the mutual exclusion problem?

A fully satisfactory solution is one that achieves three properties:

1. Mutual exclusion: at most one thread is in its critical section at
any given time

2. Freedom from deadlock: if one or more threads try to enter the
critical section, some thread will eventually succeed

3. Freedom from starvation: every thread that tries to enter the
critical section will eventually succeed

A good solution should also work for an arbitrary number of threads
sharing the same memory.

(Note that freedom from starvation implies freedom from deadlock.)
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Deadlocks

A mutual exclusion protocol provides exclusive access to shared
resources to one thread at a time.

Threads that try to access the resource when it is not available will
have to block and wait.

Mutually dependent waiting conditions may introduce a deadlock

A deadlock is the situation where a group of threads wait forever
because each of them is waiting for resources that are held by

another thread in the group (circular waiting)
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Deadlock: example

A deadlock is the situation where a group of threads wait forever
because each of them is waiting for resources that are held by

another thread in the group (circular waiting)

A protocol that achieves mutual exclusion but introduces a deadlock:

entry protocol: wait until all
other threads have executed
their critical section

Via, resti servita Madama brillante
– E. Tommasi Ferroni, 2012
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The dining philosophers

The dining philosophers is a classic synchronization problem
introduced by Dijkstra. It illustrates the problem of deadlocks using a
colorful metaphor (by Hoare).

• Five philosophers are sitting around a
dinner table, with a fork in between each
pair of adjacent philosophers.

• Each philosopher alternates between
thinking (non-critical section) and eating
(critical section).

• In order to eat, a philosopher needs to pick
up the two forks that lie to the philopher’s
left and right.

• Since the forks are shared, there is a
synchronization problem between
philosophers (threads).
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Deadlocking philosophers

An unsuccessful attempt at solving the dining philosophers problem:

entry protocol (Pk) {

left_fork.acquire(); // pick up left fork

right_fork.acquire(); // pick up right fork

}

critical section { eat(); }

exit protocol (Pk) {

left_fork.release(); // release left fork

right_fork.release(); // release right fork

}

This protocol deadlocks if all philosophers get their left forks, and wait
forever for their right forks to become available.
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The Coffman conditions

Necessary conditions for a deadlock to occur:

1. Mutual exclusion: threads may have exclusive access to the
shared resources.

2. Hold and wait: a thread that may request one resource while
holding another resource.

3. No preemption: resources cannot forcibly be released from
threads that hold them.

4. Circular wait: two or more threads form a circular chain where
each thread waits for a resource that the next thread in the chain
is holding.

Avoiding deadlocks requires to break one or more of these conditions.
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Breaking a circular wait

A solution to the dining philosophers problem that avoids deadlock by
avoiding a circular wait: pick up first the fork with the lowest id
number. This avoids the circular wait because not every philosopher
will pick up their left fork first.

entry protocol (Pk) {

if (left_fork.id()

< right_fork.id()) {

left_fork.acquire();

right_fork.acquire();

} else {

right_fork.acquire();

left_fork.acquire();

}

}

critical section { eat(); }

exit protocol (Pk) { /* ... */ }

Ordering shared resources and
forcing all threads to acquire the
resources in order is a common
measure to avoid deadlocks.
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Starving philosophers

A solution to the dining philosophers problem that avoids deadlock by
breaking hold and wait (and thus circular wait): pick up both forks at
once (atomic operation).

entry protocol (Pk) {

forks.acquire(); // pick up left and right fork,

// atomically

}

critical section { eat(); }

exit protocol (Pk) {

forks.release(); // release left and right fork,

// atomically

}

This protocol avoids deadlocks, but it may introduce starvation: a
philosopher may never get a chance to pick up the forks.
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Starvation

No deadlocks means that the system makes progress as a whole.

However, some individual thread may still make no progress because
it is treated unfairly in terms of access to shared resources.

Starvation is the situation where a thread is
perpetually denied access to a resource it requests.

Avoiding starvation requires an additional assumption about the
scheduler.
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Fairness

Starvation is the situation where a thread is
perpetually denied access to a resource it requests.

Avoiding starvation requires the scheduler to

“give every thread a chance to execute”.

Weak fairness: if a thread continuously requests (that is, requests
without interruptions) access to a resource, then
access is granted eventually (or infinitely often).

Strong fairness: if a thread requests access to a resource infinitely
often, then access is granted eventually (or infinitely
often).

Applied to a scheduler:

• request = a thread is ready (enabled)
• fairness = every thread has a chance to execute
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Sequential philosophers

Another solution to the dining philosophers problem that avoids
deadlock as well as starvation: a (fair) waiter decides which
philosopher eats; the waiter gives permission to eat to one
philosopher at a time.

entry protocol (Pk) {

while (!waiter.can_eat(k)) {

// wait for permission to eat

}

left_fork.acquire();

right_fork.acquire();

}

critical section { eat(); }

exit protocol (Pk) { /* ... */ }

Having a centralized arbiter
avoids deadlocks and
starvation, but a waiter who
only gives permission to
one philosopher a time
basically reduces the
philosophers to following a
sequential order without
active concurrency.

25 / 46



Locks



Lock objects

A lock is a data structure with interface:

interface Lock {

void lock(); // acquire lock

void unlock(); // release lock

}

• several threads share the same object lock of type Lock

• multiple threads calling lock.lock() results in exactly
one thread t acquiring the lock:

• t ’s call lock.lock() returns: t is holding the lock
• other threads block on the call lock.lock(), waiting for the lock to

become available
• a thread t that is holding the lock calls lock.unlock()

to release the lock:
• t ’s call lock.unlock() returns; the lock becomes available
• another thread waiting for the lock may succeed in acquiring it

Locks are also called mutexes (they guarantee mutual exclusion).
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Using locks

With lock objects the entry/exit protocols are trivial:

• entry protocol: call lock.lock()

• exit protocol: call lock.unlock()

int counter = 0; Lock lock = new Lock();

thread t thread u

int cnt; int cnt;

1 lock.lock();

2 cnt = counter;

3 counter = cnt + 1;

4 lock.unlock();

lock.lock(); 1

cnt = counter; 2

counter = cnt + 1; 3

lock.unlock(); 4

The implementation of the Lock interface should guarantee mutual
exclusion, deadlock freedom, and starvation freedom.
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Using locks in Java

// package with lock-related classes

import java.util.concurrent.locks.*;

// shared with other synchronizing threads

Lock lock;

while (true) {

lock.lock(); // entry protocol

try {

// critical section

// mutual exclusion is guaranteed

// by the lock protocol

} finally { // lock released even if an exception

// is thrown in the critical section

lock.unlock(); // exit protocol

}

}
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Counter with mutual exclusion

public class LockedCounter extends CCounter

{

@Override

public void run() {

lock.lock();

try {

// int cnt = counter;

// counter = counter + 1;

super.run();

} finally {

lock.unlock();

}

}

// shared by all threads working on this object

private Lock lock = new ReentrantLock();

}

The main is as before, but
instantiates an object of
class LockedCounter.

• What is printed by
running:
java ConcurrentCount?

• May the printed value
change in different
reruns?

critical
section

entry protocol

exit protocol
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Built-in locks in Java

Every object in Java has an implicit lock, which can be accessed
using the keyword synchronized.

Whole method locking
(synchronized methods):
synchronized T m() {

// the critical section

// is the whole method

// body

}

Every call to m implicitly:

1. acquires the lock

2. executes m

3. releases the lock

Block locking
(synchronized block):

synchronized(this) {

// the critical section

// is the block’s content

}

Every execution of the block
implicitly:

1. acquires the lock

2. executes the block

3. releases the lock
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Counter with mutual exclusion: with synchronized

public class SyncCounter

extends CCounter

{

@Override

public synchronized

void run() {

// int cnt = counter;

// counter = counter + 1;

super.run();

}

}

public class SyncBlockCounter

extends CCounter

{

@Override

public void run() {

synchronized(this) {

// int cnt = counter;

// counter = counter + 1;

super.run();

}

}

}
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Lock implementations in Java

The most common implementation of the Lock interface in Java is
class ReentrantLock.

Mutual exclusion:

• ReentrantLock guarantees mutual exclusion

Starvation:

• ReentrantLock does not guarantee freedom from starvation by
default

• however, calling the constructor with new ReentrantLock(true)

“favors granting access to the longest-waiting thread”
• this still does not guarantee that thread scheduling is fair

Deadlocks:

• one thread will succeed in acquiring the lock
• however, deadlocks may occur in systems that use multiple locks

(remember the dining philosophers)
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Built-in lock implementations in Java

The built-in locks – used by synchronized methods and blocks – have
the same behavior as the explicit locks of
java.util.concurrent.locks (with no guarantee about starvation).

Built-in locks, as well as all lock implementations in
java.util.concurrent.locks, are re-entrant: a thread holding a lock
can lock it again without causing a deadlock.
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Semaphores



Semaphores

Photo: British railway semaphores,
David Ingham, 2008
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Semaphores

A (general/counting) semaphore is a data structure with interface:

interface Semaphore {

int count(); // current value of counter

void up(); // increment counter

void down(); // decrement counter

}

Several threads share the same object sem of type Semaphore:

• initially count is set to a nonnegative value C (the capacity)

• a call to sem.up() atomically increments count by one

• a call to sem.down(): waits until count is positive, and then
atomically decrements count by one
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Semaphores for permissions

A semaphore is often used to regulate access permits to a finite
number of resources:

• the capacity C is the number of initially available resources

• up (also called signal) releases a resource, which becomes
available

• down (also called wait) acquires a resource if it is available

Example: hot desks.

desk 1entranceavailable desk 2 desk 3

y2 y x1 y x x0

leaving

y x1 y
desk please!

y y x0
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Mutual exclusion for two processes with semaphores

With semaphores the entry/exit protocols are trivial:

• initialize semaphore to 1

• entry protocol: call sem.down()

• exit protocol: call sem.up()

Semaphore sem = new Semaphore(1);

thread t thread u

int cnt; int cnt;

1 sem.down();

2 cnt = counter;

3 counter = cnt + 1;

4 sem.up();

sem.down(); 1

cnt = counter; 2

counter = cnt + 1; 3

sem.up(); 4

The implementation of the Semaphore interface guarantees mutual
exclusion, deadlock freedom, and starvation freedom.
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Weak vs. strong semaphores

Every implementation of semaphores should guarantee the atomicity
of the up and down operations, as well as deadlock freedom (for
threads only sharing one semaphore: deadlocks may still occur if
there are other synchronization constraints).

Fairness is optional:

weak semaphore: threads waiting to perform down are scheduled
nondeterministically

strong semaphore: threads waiting to perform down are scheduled
fairly in FIFO (First In First Out) order
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Invariants

An object’s invariant is a property that always holds between calls to
the object’s methods:

• the invariant holds initially (when the object is created)

• every method call starts in a state that satisfies the invariant

• every method call ends in a state that satisfies the invariant

For example: a bank account that cannot be overdrawn has an
invariant balance >= 0

class BankAccount {

private int balance = 0;

void deposit(int amount)

{ if (amount > 0) balance += amount; }

void withdraw(int amount)

{ if (amount > 0 && balance > amount) balance -= amount; }

}
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Invariants in pseudo-code

We occasionally annotate classes with invariants using the
pseudo-code keyword invariant. Note that invariant is not a valid
Java keyword – that is why we highlight it in a different color – but we
will use it whenever it helps make more explicit the behavior of
classes.

class BankAccount {

private int balance = 0;

void deposit(int amount)

{ if (amount > 0) balance += amount; }

void withdraw(int amount)

{ if (amount > 0 && balance > amount) balance -= amount; }

invariant { balance >= 0; } // not valid Java code

}
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Invariants of semaphores

A semaphore object with initial capacity C satisfies the invariant:

interface Semaphore {

int count();

void up();

void down();

invariant {

count() >= 0;

count() == C + #up - #down;

}

} number of calls to up number of calls to down

Invariants characterize the behavior of an object, and are very useful
for proofs.
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Binary semaphores

A semaphore with capacity 1 and operated such that count() is
always at most 1 is called a binary semaphore.

interface BinarySemaphore extends Semaphore {

invariant

{ 0 <= count() <= 1;

count() == C + #up - #down; }

}

Mutual exclusion uses a binary semaphore:

Semaphore sem = new Semaphore(1); // shared by all threads

thread t

sem.down();

// critical section

sem.up();

If the semaphore is strong this guarantees starvation freedom.
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Binary semaphores vs. locks

Binary semaphore are very similar to locks with one difference:

• in a lock, only the thread that decrements the counter to 0 can
increment it back to 1

• in a semaphore, a thread may decrement the counter to 0 and
then let another thread increment it to 1

Thus (binary) semaphores support transferring of permissions.
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Using semaphores in Java

package java.util.concurrent;

public class Semaphore {

Semaphore(int permits); // initialize with capacity ‘permits’

Semaphore(int permits, boolean fair);

// fair == true ⇔ create a strong semaphore

// fair == false ⇔ create a weak semaphore (default)

void acquire(); // corresponds to down

void release(); // corresponds to up

int availablePermits(); // corresponds to count

}

Method acquire may throw an InterruptedException: catch or
propagate.
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Synchronization with
semaphores



The k -exclusion problem

The k -exclusion problem: devise a protocol that allows
up to k threads to be in their critical sections at the same time

• Mutual exclusion problem = 1-exclusion problem
• The “hot desks” are an instance of the k -exclusion problem

A solution to the k -exclusion problem using a semaphore of capacity
k : a straightforward generalization of mutual exclusion.

Semaphore sem = new Semaphore(k); // shared by all threads

thread t

sem.down();

// critical section

sem.up();
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Barriers

A barrier is a form of synchronization where there is a
point (the barrier) in a program’s execution that

all threads in a group have to reach before
any of them is allowed to continue

A solution to the barrier synchronization problem for 2 threads using
binary semaphores.

Semaphore[] done = {new Semaphore(0), new Semaphore(0)};

t0 t1
// code before barrier

done[t0].up(); // t done

done[t1].down(); // wait u

// code after barrier

// code before barrier

done[t1].up(); // u done

done[t0].down(); // wait t

// code after barrier

up done unconditionally down waits until the other
thread has reached the barrier

capacity 0 forces up before first down

46 / 46



Barriers

A barrier is a form of synchronization where there is a
point (the barrier) in a program’s execution that

all threads in a group have to reach before
any of them is allowed to continue

A solution to the barrier synchronization problem for 2 threads using
binary semaphores.

Semaphore[] done = {new Semaphore(0), new Semaphore(0)};

t0 t1
// code before barrier

done[t0].up(); // t done

done[t1].down(); // wait u

// code after barrier

// code before barrier

done[t1].up(); // u done

done[t0].down(); // wait t

// code after barrier

up done unconditionally down waits until the other
thread has reached the barrier

capacity 0 forces up before first down

46 / 46



Barriers

A barrier is a form of synchronization where there is a
point (the barrier) in a program’s execution that

all threads in a group have to reach before
any of them is allowed to continue

A solution to the barrier synchronization problem for 2 threads using
binary semaphores.

Semaphore[] done = {new Semaphore(0), new Semaphore(0)};

t0 t1
// code before barrier

done[t0].up(); // t done

done[t1].down(); // wait u

// code after barrier

// code before barrier

done[t1].up(); // u done

done[t0].down(); // wait t

// code after barrier

up done unconditionally down waits until the other
thread has reached the barrier

capacity 0 forces up before first down

46 / 46



These slides’ license

© 2016–2019 Carlo A. Furia, Sandro Stucki

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

	Concurrent programs
	Races
	Synchronization problems
	Locks
	Semaphores
	Synchronization with semaphores

